Computing Node Polynomials for Plane Curves

نویسنده

  • Florian Block
چکیده

According to the Göttsche conjecture (now a theorem), the degree N of the Severi variety of plane curves of degree d with δ nodes is given by a polynomial in d, provided d is large enough. These “node polynomials” Nδ(d) were determined by Vainsencher and Kleiman–Piene for δ ≤ 6 and δ ≤ 8, respectively. Building on ideas of Fomin and Mikhalkin, we develop an explicit algorithm for computing all node polynomials, and use it to compute Nδ(d) for δ ≤ 14. Furthermore, we improve the threshold of polynomiality and verify Göttsche’s conjecture on the optimal threshold up to δ ≤ 14. We also determine the first 9 coefficients of Nδ(d), for general δ, settling and extending a 1994 conjecture of Di Francesco and Itzykson. Résumé. Selon la Conjecture de Göttsche (maintenant un Théorème), le degréN de la variété de Severi des courbes planes de degré d avec δ noeuds est donné par un polynôme en d, pour d assez grand. Ces polynômes de noeudsNδ(d) ont été déterminés par Vainsencher et Kleiman–Piene pour δ ≤ 6 et δ ≤ 8, respectivement. S’appuyant sur les idées de Fomin et Mikhalkin, nous développons un algorithme explicite permettant de calculer tous les polynômes de noeuds, et l’utilisons pour calculer Nδ(d), pour δ ≤ 14. De plus, nous améliorons le seuil de polynomialité et vérifions la Conjecture de Göttsche sur le seuil optimal jusqu’à δ ≤ 14. Nous déterminons aussi les 9 premiers coéfficients de Nδ(d), pour un δ quelconque, confirmant et étendant la Conjecture de Di Francesco et Itzykson de 1994.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Roots of Polynomials over Function Fields of Curves

We design algorithms for nding roots of polynomials over function elds of curves. Such algorithms are useful for list decoding of Reed-Solomon and algebraic-geometric codes. In the rst half of the paper we will focus on bivariate polynomials, i.e., polynomials over the coordinate ring of the aane line. In the second half we will design algorithms for computing roots of polynomials over the func...

متن کامل

On edge detour index polynomials

The edge detour index polynomials were recently introduced for computing the edge detour indices. In this paper we find relations among edge detour polynomials for the 2-dimensional graph of $TUC_4C_8(S)$ in a Euclidean plane and $TUC4C8(S)$ nanotorus.

متن کامل

Relative node polynomials for plane curves

We generalize the recent work of S. Fomin and G. Mikhalkin on polynomial formulas for Severi degrees. The degree of the Severi variety of plane curves of degree d and δ nodes is given by a polynomial in d , provided δ is fixed and d is large enough. We extend this result to generalized Severi varieties parametrizing plane curves that, in addition, satisfy tangency conditions of given orders wit...

متن کامل

9 N ov 2 00 1 Node polynomials for families : results and examples

We continue the development of methods for enumerating nodal curves on smooth complex surfaces, stressing the range of validity. We illustrate the new methods in three important examples. First, for up to eight nodes, we confirm Göttsche's conjecture about plane curves of low degree. Second, we justify Vainsencher's enumeration of irreducible six-nodal plane curves on a general quintic threefol...

متن کامل

Computing Roots of Polynomials over Function Fields of Curves Shuhong Gao and M. Amin Shokrollahi

We design algorithms for nding roots of polynomials over function elds of curves. Such algorithms are useful for list decoding of Reed-Solomon and algebraicgeometric codes. In the rst half of the paper we will focus on bivariate polynomials, i.e., polynomials over the coordinate ring of the a ne line. In the second half we will design algorithms for computing roots of polynomials over the funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010